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Classification general taxonomy
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Data for supervised classification

Turn the phenotype knowledge to one’s advantage
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@ The class constitutes a kind of metaknowledge of high

usability

@ A classifier is a function that maps instances with classes

7 (X,

Lxn) = {1,2,...,m}
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Classification paradigms

To enumerate some...

@ Lazy family: k nearest neighbours

@ Functions: Linear Discriminant Analysis, Regression,
SVMs

@ Bayesian: Naive Bayes, TAN, FAN, k-DB, Bayesian
Networks

@ Trees: ID3, C4.5, M5
@ ... more and more
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Evaluation indices

General indices
Accuracy, Brier score, Cross-entropy error

Discrimination

Sensitivity, Specificity, Positive predicitive value PPV, Negative
predicitive value NPV, ROC curve, Area under curve AUC,
Matthews correlation coefficient MCC

Calibration
Calibration curves, Hosmer and Lemeshow goodness-of-fit
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Measuring the performance of a classifier

Confusion matrix

C True class

+ -

Cuy Predicted class + a b
- C d

Figures of merit

Accuracy: ﬁ‘c’ﬂj Rate of true positives (sensitivity): 32
Error rate: ﬁ&d Rate of true negatives (specificity): ﬁ"d
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Estimation methods: No honest
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Estimation methods: Train and test
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Estimation methods: Train and test several times
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Estimation methods: k—fold cross validation

o g
Algorithm 7>, Y
9 \‘/ \?é@\\/\ X Xu C P A
TN o Algorithm /™ Ps
(M) t> M, = a—
" Y

x|

|k
Pu=-> b
i

PATTERN RECOGNITION PERFORMANCE ASSESSMENT



Pattern Recognition Classification Assessment

Estimation methods: 0.632 bootstrapping
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