PATTERN RECOGNITION PERFORMANCE ASSESSMENT

▲ □ ▶ ▲ □ ▶

Classification general taxonomy

PATTERN RECOGNITION PERFORMANCE ASSESSMENT

Data for supervised classification

Turn the phenotype knowledge to one's advantage							
	<i>X</i> ₁	<i>X</i> ₂		Xi		Xn	C
$(\mathbf{x}^{(1)}, \mathbf{c}^{(1)})$	<i>x</i> ₁ ¹	<i>x</i> ₂ ¹		x_i^1		<i>x</i> _n ¹	C ¹
:	÷	÷	·	÷	·	:	÷
$(\pmb{x}^{(j)},\pmb{c}^{(j)})$	x_1^j	x_2^j		x_i^j		x _n j	c ^j
:	÷	÷	·	÷	·	:	÷
$(\pmb{x}^{(N)}, \pmb{c}^{(N)})$	x_1^N	x_2^N		x _i N		x _n ^N	cN
x ^(N+1)	$x_1^{(N+1)}$) $x_2^{(N+)}$	-1)	$x_i^{(N+)}$	-1)	$x_{n}^{(N+1)}$???

- The class constitutes a kind of metaknowledge of high usability
- A classifier is a function that maps instances with classes

$$\gamma: (x_1,\ldots,x_n) \to \{1,2,\ldots,m\}$$

Classification paradigms

To enumerate some...

- Lazy family: k nearest neighbours
- Functions: Linear Discriminant Analysis, Regression, SVMs
- Bayesian: Naïve Bayes, TAN, FAN, k-DB, Bayesian Networks
- Trees: ID3, C4.5, M5
- ... more and more

PATTERN RECOGNITION PERFORMANCE ASSESSMENT

A (B) + A (B) + A (B) +

Evaluation indices

General indices

Accuracy, Brier score, Cross-entropy error

Discrimination

Sensitivity, Specificity, Positive predicitive value PPV, Negative predicitive value NPV, ROC curve, Area under curve AUC, Matthews correlation coefficient MCC

Calibration

Calibration curves, Hosmer and Lemeshow goodness-of-fit

PATTERN RECOGNITION PERFORMANCE ASSESSMENT

Measuring the performance of a classifier

Figures of merit

Accuracy: $\frac{a+d}{a+b+c+d}$	Rate of true positives (sensitivity): $\frac{a}{a+c}$
Error rate: $\frac{c+b}{a+b+c+d}$	Rate of true negatives (specificity): $\frac{d}{b+a}$

PATTERN RECOGNITION PERFORMANCE ASSESSMENT

(日)

Pattern Recognition Classification

ion Assessment

Estimation methods: No honest

$$\hat{p}_M = \frac{1}{N} \sum_{i=1}^N \delta(c^{(i)} = c_M^{(i)})$$

PATTERN RECOGNITION PERFORMANCE ASSESSMENT

-

크

Pattern Recognition

Classification Assessment

Estimation methods: Train and test

$$\hat{p}_{M} = \frac{1}{N - N_{1}} \sum_{i=1}^{N - N_{1}} \delta(c^{(N_{1} + i)} = c_{M}^{(N_{1} + i)})$$

PATTERN RECOGNITION PERFORMANCE ASSESSMENT

-

Estimation methods: Train and test several times

$$\hat{p}_M = rac{1}{B}\sum_{i=1}^B \hat{p}_i$$

PATTERN RECOGNITION PERFORMANCE ASSESSMENT

3 1 4 3 1

Pattern Recognition Class

Classification Assessment

Estimation methods: *k***–fold cross validation**

$$\hat{p}_M = \frac{1}{k} \sum_{i=1}^k \hat{p}_i$$

PATTERN RECOGNITION PERFORMANCE ASSESSMENT

ъ

Pattern Recognition

Estimation methods: 0.632 bootstrapping

PATTERN RECOGNITION PERFORMANCE ASSESSMENT

크